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Main guestion

How can we analyze non-stationary and nonlinear
time series?

e Stationary time series: ensemble means are time-shift invariant
« Weakly stationary: true for 1st and 2nd order means

E(|X (1)?]) < oc.
E(X(t)) = m, (1.1)
ClX{t). X(tz)) = ClX(t1 + 7). Xtz 4+ 7)) = Clt1 — 1),

« A non-stationary example is a transient signal like a delta function

* Nonlinear time series: generated by an underlying dynamical
system obeying nonlinear equations

« Often linear approximations can be made -> complex time series
can be decomposed into a superposition of simple solutions (e.g.
sinusoidal waves)

What do we want to gain from the analysis?
* Determine characteristic time / frequency scales for the energy



Motivation

Neuroscience is filled with complex time series
* Local field potentials and electroencephalograms
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Existing methods

Dominant approach: decomposition of the time
series into component basis functions satisfying
* (a) Completeness of the basis
* (b) Orthogonality of the basis

Examples:
* Fourier methods
* Wavelet analysis
* Principal component analysis
e Etc. ...



Fourier methods

Method

* Decompose time series, f(t), into global sinusoidal components
of fixed amplitude, a; ,(e.g. FFT) -> complete & orthogonal basis
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Interpretation

* The spectral amplitudes , a;, yield the energy contributed by a
sinusoid at frequency o, that spans the whole time series

Most useful when . . ..

* The underlying process is linear so that the superposition of
sinusoidal solutions makes physical sense

* The time series Is stationary, since the a, are constant

 |If not, the spectral energy spreads, often requiring carefully-
phased, global (possibly harmonic) sinusoidal components to
reconstruct the non-uniform time series

e The Fourier spectrum looses track of time location for events -> not
a local description



Fourier methods

If piece-wise stationarity can be assumed

* Construct spectrogram by sliding a window across the time-
series and performina Fourier analvsis
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» Constrained by a time-frequency tradeoff -> often don’t capture the
temporal events at the desired frequency resolution -> still nonlocal



Fourier methods

But even if weak stationarity holds, Fourier methods
may not give an efficient (adaptive) representation
* Single decaying sinusoid is compactly described as:
z = exp(—0.01t) cos Zt. (8.9)
'

Note this is not stationary
a | if it starts abruptly at t=0
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Wavelet analysis

Method

* Decompose time series, X(t), into local, time-dilated and time-
translated wavelet components, y -> complete (not necessarily

orthogonal) basis

o i T
Wia.b; X, 2) = |a _'fjf X(t)er? (?‘ J) clt, (2.1)
e (1

Interpretation
* W represents the energy in X of temporal scale a at t=b

Attractive because. . ..
* |ocal, although higher frequencies are more localized

e Uniform temporal resolution for all frequency scales
» But, resolution is limited by the basic wavelet

e Useful for characterizing gradual frequency changes

But. ...
* Non-adaptive -- same basic wavelet is used for all data




Principal component analysis

Method

* Decompose time series, z(t), into eigenbases of the covariance
maitrix -> complete, orthogonal basis

mn

(. t) =Y ag(t)fulz).  fi- fr = O C- fr = A S
l
Interpretation
* Modes f; often interpreted as “directions” of independent
variations, but they may not be physical modes
Attractive because. . ..
* Adaptive -- derived from the data

But. . ..

* Distribution of eigenvalues do not yield characteristic time or
frequency scales

* Eigenmodes themselves need not be linear or stationary (and
therefore are still not easily analyzed by spectral methods)



What would we like?

A decomposition that is

* (a) Complete

* (b) Orthogonal

* (c) Local

* (d) Adaptive
From which local time / frequency scales are
extracted

How do we define local time/ frequency scales?
* |nstantaneous frequency



Instantaneous vs. global frequency

Global frequency = average frequency derived by
weighting by the Fourier power spectrum, |S(w)|?

'::-\'.4.-'::' = fu.-‘ .E;l:_w'.] 4 deu,

Instantaneous frequency of a signal, X(t)

* Form an analytic signal, Z(t), from X(t)
« Take the Hilbert transform of X(t)
= X(th

—— dt’, Z(t) = X(t) + 1Y (t) = a(t)e"™

Y(t) = =P

—

— Physical interpretation: Y(t) is the best local fit (since the 1/t
emphasizes local properties) of a trig function to X(t)

— Polar coordinate description for Z(t) allows the phase 6(t) to be defined

« Z(t) has the same positive frequency spectrum as X(t), but zero
negative frequency spectrum

* Define instantaneous frequency as the rate of phase change
df(t)

ot



Hilbert spectrum of the LFP

Not so useful. . ..
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Valid description?

When is such a description valid?

* |f this concept is applied blindly to any analytic function, one
may run into one of 4 paradoxes (L. Cohen)

1) “The instantaneous frequency may not be one of the frequencies
In the (Fourier) spectrum.”

2) “If we have a line spectrum consisting of only a few sharp
frequencies, then the instantaneous frequency may be continuous
and range over an infinite number of values.”

3) “Although the spectrum of the analytic signal is zero for negative
frequencies, the instantaneous frequency may be negative.”

4) “For a bandlimited signal the instantaneous frequency may go
outside the band.”

* |nstead, the definition implies that at a given time, there is only
a SINGLE frequency -> “mono-component”

» Perhaps by restricting to “narrow-bandwidth” signals, but attempts
to define this are vague, and “global”

» Global restrictions have been specified which allow for a
meaningful instantaneous frequency: “real part of Fourier transform
has to have only positive frequency”



A simple example
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Figure 1. Physical interpretation of instantaneous frequency. (a) The phase plane for the model
functions of x(#) = a+sint. (a) a=0; (b) a < 1; (¢) a > 1. (b) The unwrapped phase function
of the model functions. (¢) The instantanecus frequency computed according to equation (3.4).



Goals of the new method

1) Decompose time series into superposition of
components with well defined instantaneous
frequency -> Intrinsic Mode Functions (IMF)

* Components should (approximately) obey earlier requirements
of completeness, orthogonality, locality and adaptiveness.

* To get an IMF, need to
« LOCALLY eliminate riding waves
« LOCALLY eliminate asymmetries (defined by envelope of extrema)
2) Construct the Hilbert spectrum of each IMF,
representing it in the amplitude - instantaneous
frequency - time plane



Properties of IMF’s

An intrinsic mode function (IMF) is a function that satisfies two conditions: (1)
in the whole data set, the number of extrema and the mumber of zero crossings must
either equal or differ at most by one; and (2) at any point, the mean value of the
envelope defined by the local maxima and the envelope defined by the local minima
18 ZEeTo.

(1) corresponds loosely to finding “narrow-band”
signals, or eliminating “riding-waves”

(2) ensures that the instantaneous frequency will
not have fluctuations arising from an asymmetric
wave forms

The name ‘intrinsic mode function’ 18 adopted becanse 1t represents the oscillation
mode 1mbedded in the data. With this definition, the IMF in each cvcle, defined by
the zero crossings, involves only one mode of oscillation, no complex riding waves are
allowed. With this definition, an IMF 15 not restricted to a narrow band signal, and it
can be both amplitude and frequency modulated. In fact, it can be non-stationary. As

Both imply finding modes with zero LOCAL mean

that the components all satisfy the conditions imposed on them. Physically, the nec-
essary conditions for us to define a meaningful iInstantaneous frequency are that the
funections are symmetric with respect to the local zero mean, and have the same nm-
bers of zero crossings and extrema. Based on these observations, we propose a class



Finding IMFEs: Emperical Mode Decomposition

Most data are not naturally IMF’s

starting point. Unfortunately, most of the data are not INMFs. At any given time, the
data may involve more than one oscillatory mode: that 12 why the simple Hilbert
transform cannot provide the full deseription of the frequency content for the general
data as reported by Long et al. (1995). We have to decompose the data into IMF

What are we looking for?

The essence of the method is to identify the intrinsic oscillatory modes by their
characteristic time scales in the data empirically, and then decompose the data

Assumptions

1) At least two extrema -- one max, one min

2) Characteristic time scale defined by the time between extrema

3) If no extrema, differentiation will reveal extrema (integrate at
end)



The sifting process

Procedure
* |dentify the extrema (both maxima and minima) of the data, X(t)

* Generate the envelope by connecting maxima points with a
cubic spline, and minima points with a cubic spline

* Determine the LOCAL mean, m,, by averaging the envelope
* Since IMF should have zero local mean, subtract out the mean
from the data
A(t) —my = hy. (5.1)
* h, is probably not an IMF; repeat as necessary until it is
e -> End up with an IMF

As described above, the process 1= indeed like sifting: to separate the finest local
mode from the data first based only on the characteristic time scale. The sifting
process, however, has two effects: (a) to eliminate riding waves; and (b) to smooth
uneven amplitudes.
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Finding all the IMFs

Procedure
* Once the first set of “siftings” results in an IMF, define
1 = hyp. (5.4)
* This 1st component contains the finest temporal scale in the signal
* Generate the residue, r,, of the data by subtracting out c,
X(t)—cp =1 (5.6)
* The residue now contains information about longer periods ->
resift to find additional components

|II]_ - ':.-2 — .rlz aaaaa .rl-n__]_ - !:”_ — |Ilr||_.. ES;‘:I

* Form the superposition of the components to reconstruct the
data

T

X(t) =Y e+ (5.8)

i=1

» Linear superposition of modes
« Efficient/adaptive (based on data) representation



Some detalls.

When does the sifting stop?

Therefore, the sifting process should be applied with care, for carrving the process
to an extreme could make the resulting IMF a pure frequency modulated signal of
constant amplitude. To guarantee that the IMF components retain enough physical
sense of both amplitude and frequency modulations, we have to determine a criterion
for the sifting process to stop. This can be accomplished by limiting the size of the
standard deviation, SD, cumputed from the two consecutive sifting results as

. 1:| ) — hye(t))]?
SD = ) 5.5
Z () 159

A typical value for SD) can be set between (1.2 and 0.3. As a comparison, the two
Fourier spectra, computed by shifting only five out of 1024 points from the same
data, can have an equivalent SD of (.2-0.3 calculated point-by-point. Therefore, a
SD wvalue of 0.2-0.3 for the sifting procedure is a very rigorous limitation for the
difference between siftings.

* |n practice, this criterion seems to “work”
* Drawback: ad hoc criterion
Technical problems

* Cubic spline fitting is computationally intensive and creates
distortions near the end points



Example of a turbulence data set
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Figure 5. Calibrated wind data from a wind-wave tunnel.



Decomposition

Total of 9 components

e Efficient representation
(relative to Fourier) of a
turbulence data set

* Never have oscillations of
the same scale at the
same time in different
modes
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Satisfying our criteria

4) Adaptive
* By construction, since based on the data
3) Local

® By construction, since local properties of the oscillatory modes
are emphasized

1) Completeness

* Complete for a given data set, as established by Egn. (5.8)
* Check numerically by reconstructing the data (see next page)

2) Orthogonality

* Not guaranteed theoretically, although by construction, the
components should be locally orthogonal

* Orthogonality prevents energy leakage between modes
* Check a posteriori with the index of orthogonality (10)

m:i(

t=0

n41ni41

% r:.'}-l;r)f-‘;.(rjl..-*xﬂ(r']). (6.4)

i=1 k=1
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Visualizing the data

Hilbert spectrum
* |n terms of the IMFs, the time series can now be written as

Xt Zaj[_u pxp(i [u-;j.j;x._ju clr.). (7.1)

i=1

* This is a generalization of the Fourier decomposition, allowing for
time varying amplitudes and frequencies, thus simplifying the
description of non-stationary data

* The spectrum describes the joint distribution of the amplitude
and frequency content of the signal as a function of time

« Often presented as contour or color plots of the amplitude (or

energy) over the time-frequency plane

« Time resolution can be as precise as the sampling period
* Frequency resolution is arbitrary (up to the Nyquist frequency)
— Lowest extractable frequency (best resolution) = 1/ T Hz, T = duration

— Highest extractable frequency = 1/ (n dt) Hz, dt = sample period, n =
minimum number of pts to accurately define frequency = 5

— -> Max number of bins = T/ (n dt)
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Figure 8. The Hilbert spectrum for the wind data with 200 frequency cells. The wind energy
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Morlet wavelet spectrum
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Figure 9. The Morlet wavelet spectrum for the wind data with the same number of frequency
cells. Wind energy appears in smoothed contours with a rich energy distribution in the high



Smoothed Hilbert spectrum
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Quantifying stationarity

Simple idea: Stationary processes should have
horizontal contours in the Hilbert spectrum
* Define the marginal Hilbert spectrum by integrating over time:

T
flw) / Hw, t)dt. (7.4)
0

* Define the mean marginal spectrum as
l

nlw) = =hl{w).

* Degree of stationarity over the whole data set is then

T C a2
w. .

DS{w) if (l - ”I"_ "I) dt. (7.7)
' I' Jq nlw) "

* The closer to zero this is, the more stationary the system

=1

=]



Calibrating the technigue: single cycle
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Figure 14. A ealibration of time loealization of the Hilbert spectrum analysis. (a) The calibration

data. a single sine wave. (h) The Hilbert spectrum for the calibration signal: the energy is highly

localized in time and frequency, though there are some end effects. (¢) The Morlet wavelet

spectrum for the calibration signal: the calibration signal is localized by the high-frequency
components, vet the energy distribution in the frequency space spreads widely in comparison
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Calibrating the technique: Stokes wave

2nd order Stokes wave
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Figure 15. Validation of the intrawave frequency modulation with Stokian waves. (a) The pro-
file of a second-order Stokes wave in deep water with sharp crests and rounded-off troughs in
comparison with the pure cosine waves. (b) The IMF generated by the Stokes wave, there is only

one component; the constant off-set is not shown.
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intrawave frequency modulation interpretation of the Stokes wave is clear. In the Hilbert spec-
trum the frequency variation is bounded in a narrow range around 0.03 Hz with no harmonies.



Intrawave frequency modulation

Interpretation

* |Intrawave frequency modulation (from 0.02 to 0.04 Hz) vs.
harmonic distortion: is it a more physical interpretation?
« Harmonic components often arise because a linear system is used

to approximate the nonlinear one (e.g. perturbation expansion into
an infinite series of Fourier modes)

 Intrawave frequency modulation produces waves with similar
distortion as the Stokes wave



Example of amplitude modulation
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Figure 20. Data for an amplitude modulated wave: a single carrier with exponentially decaying
envelope.
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Figure 21. The Hilbert spectrum of the data shown in figure 20. This example shows that the

amplitude modulation can also generate intrawave frequency modulation, but the range of the
modulation is only +1.5%.
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Figure 22. The wavelet spectrum from the same data shown in figure 20. In this representation.
the end effect is very prominent; the frequency is widely spread. As a comparison of wavelet
and Hilbert spectral ana.lvsm the Hilbert spectrum is also plotted in this figure in contour lines,
which shows up as a thin line around 0.03 Hz. This example fllustrates two points: the Hilbert
spectrum has much better frequency definition. and the amplitude-variation-induced frequency
modulation is small.
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than the marginal wavelet spectrum, but it totally failed to show the time variation of the signal.
The marginal Hilbert is still sharp to define the carrier frequency.
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Fourier methods

If piece-wise stationarity can be assumed

* Construct spectrogram by sliding a window across the time-
series and performina Fourier analvsis
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Hilbert spectrum of the LFP

Not so useful. . ..
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Hilbert spectrum of LFP IMF modes
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Hilbert spectrum of IMF modes 1-7
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Spectrogram of mouse call
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Conclusions

*Novel technique for analyzing non-stationary and
nonlinear time series

*Best suited for cases when signal time scales (and
energy?) are distinct from the noise time scales

*Best suited for situations where oscillations may
provide a physical description

Technical improvements are necessary (but have
been developed over the last 5 years)



